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The instability of a compressible flow past a wedge is investigated in the hypersonic 
limit. Particular attention is paid to Tollmien-Schlichting waves governed by triple- 
deck theory though some discussion of inviscid modes is given. It is shown that the 
attached shock can have a significant effect on the growth rates of Tollmien- 
Schlichting waves. Moreover, the presence of the shock allows for more than one 
unstable Tollmien-Schlichting wave. Indeed an infinite discrete spectrum of unstable 
waves is induced by the shock, but these modes are unstable over relatively small but 
high frequency ranges. The shock is shown to have little effect on the inviscid modes 
considered by previous authors and an asymptotic description of inviscid modes in 
the hypersonic limit is given. 

1. Introduction 
Our concern is with the instability of hypersonic flow around a wedge of small 

angle. The work is motivated by recent interest in the development of hypersonic 
vehicles. We do not account for real gas effects even though some of the vehicles in 
question will certainly operate a t  speeds where such effects are important. Here we 
shall concentrate on Tollmien-Schlichting waves governed by triple-deck theory 
though some discussion of inviscid modes will be given. In  a related paper, Hall & Fu 
(1989), the Gortler vortex instability mechanism a t  hypersonic speeds is considered. 
In  that paper, it  is shown that centrifugal instabilities have their structure simplified 
considerably in the hypersonic limit. This is not the case for Tollmien-Schlichting 
waves, although inviscid modes have a relatively simple structure. In  fact, for a 
Chapman viscosity law we find that the logarithmically small layer a t  the edge of the 
boundary layer which controls inviscid modes is precisely the same layer where 
Gortler vortices become trapped a t  hypersonic speeds. It would therefore seem that 
the nonlinear interaction between inviscid and centrifugal instabilities is an 
important problem to be considered in the hypersonic limit. 

Before giving more details of the problem to be considered here, we shall give a brief 
review of some relevant previous calculations on compressible stability problems. 
For a review of viscous and inviscid stability properties of compressible boundary 
layers the reader is referred to the articles by Reshotko (1976) and Mack (1987). 
Perhaps the main feature of compressible boundary layers of practical importance is 
that they are unstable to both inviscid and viscous instability waves. The inviscid 
modes have wavelengths comparable with the boundary-layer thickness whilst the 
Tollmien-Schlichting waves have longer wavelengths. Either the successive 
approximation procedure of Gaster (1974) or the formal asymptotic description 
based on triple-deck theory, as used for incompressible flows by Smith (1979a, b ) ,  can 
be extended to the compressible viscous instability problem in a routine manner. 
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Such a calculation was given by Gaponov (1981) using essentially Gaster’s approach, 
whilst more recently Smith (1989) has applied triple-deck theory to the lower-branch 
viscous modes of compressible boundary layers (see Gajjar & Cole (1989) for a study 
of upper-branch modes in compressible flows). A significant result of Smith (1989) is 
that when the free-stream Mach number is increased there is a critical size of Mach 
number in terms of the (large) Reynolds number a t  which the Tollmien-Schlichting 
downstream development takes place on a lengthscale comparable with that over 
which the basic state develops. A t  this stage the waves cannot be described by any 
quasi-parallel theory and the evolution can only be described by numerical 
integration of the governing linear partial differential equations. This is precisely the 
situation in the incompressible Gortler stability problem, see Hall (1983) ; perversely, 
in the hypersonic limit the most significant Gortler vortices lose this property and 
become only weakly dependent on non-parallel effects. A question of some 
importance raised by Smith’s work is whether the failure of the quasi-parallel 
approach a t  high Mach numbers means that many of the parallel flow calculations 
in this regime a t  finite Reynolds numbers are in error. Because Smith’s prediction is 
based on a double high-Reynolds-number and high-Mach-number limit, the regime 
at  which this failure occurs must be identified by numerical integration of the 
governing linear partial differential equations. 

This inviscid modes of instability of a compressible boundary layer have been 
documented by Mack (1987). In  fact, there can be unstable two- and three- 
dimensional modes and neutral modes associated with a generalized inflection point 
and non-inflectional neutral modes. At Mach numbers above three it is the inviscid 
modes which have the highest growth rates and therefore presumably dominate the 
transition problem in compressible boundary layers. However, previous calculations 
for viscous and inviscid modes have taken little account of the presence of shocks in 
the flow field (but see Petrov 1984), though a t  high Mach numbers there is no 
question that they play an important role in determining the basic state. A primary 
aim of the present calculation is to gain some insight into the role of shock waves in 
the formation of viscous and inviscid modes in a compressible boundary layer. 

The particular configuration that we investigate is the hypersonic flow around an 
aligned wedge of semi-angle 8. The inviscid flow in this case is a uniform state either 
side of straight shocks which make an angle q5 = cr-8 with the wedge. At the wedge 
a boundary layer is set up and the fluid velocity is reduced to zero inside this layer. 
We restrict our attention to the case when the wedge is insulated though our 
calculations can readily be extended to the isothermal case. 

In order that Tollmien-Schlichting wave disturbances to this flow can be treated 
in a quasi-parallel manner we make the Newtonian approximation and take the 
distance of the shock from the wall to be comparable with the upper-deck scale over 
which Tollmien-Schlichting waves governed by triple-deck theory will decay. At the 
shock we derive linearized boundary conditions which the Tollmien-Schlichting 
wave must satisfy. This condition effectively changes the eigenrelation from that 
discussed in the absence of shocks by Smith (1989). We show that the shock has a 
significant effect on the growth rate of the so-called subsonic mode discussed by 
Smith, and further, that additional modes exist because of the shock. The latter 
modes can be interpreted as acoustic waves trapped between the wedge and the 
shock. Some have much larger growth rates than the subsonic mode, although it is 
noted that such modes have relatively high frequencies and are unstable only over 
short ranges of frequency. 
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FIGURE 1. The geometry of the wedge and shock for a high-Mach-number flow. 

Some discussion of inviscid disturbances is also given. At high Mach numbers we 
give the appropriate asymptotic structure of the so-called acoustic modes, and show 
that except for very small wedge angles they will be influenced little by the presence 
of the shock. 

The procedure adopted in the rest of this paper is as follows: in $2 we formulate 
the appropriate scalings for Tollmien-Schlichting instabilities of the hypersonic flow 
past a wedge. In $3  the triple-deck equations for such modes are derived and in $ 4  
the dispersion relationship appropriate to the linearized form of these equations is 
given and discussed. In $ 5  we give a brief discussion of the structure of inviscid 
modes in hypersonic boundary layers whilst in $6 we draw some conclusions. Finally 
in an Appendix we derive the shock conditions appropriate to a disturbance with 
arbitrary lengthscales and use them to find the simplified shock condition for a 
Tollmien-Schlichting wave. 

2. Formulation 
The basic flow whose stability we examine is illustrated in figure I .  For simplicity, 

the wedge is taken to be symmetrically aligned with an oncoming supersonic flow 
with velocity magnitude 6. Shocks of semi-angle g develop from the tip of the wedge 
(the acute angle between the shock and the wedge is q5 = g-0) .  Quantities upstream 
of the shock are indicated by the subscript u, and quantities in the so-called 'shock- 
layer ' between the shock and wedge by the subscript s. Cartesian axes are introduced 
with the 4- and $-coordinates aligned and normal with the upper surface of the 
wedge, and the 2-coordinate in the spanwise dire:tion. The corresponding velocity 
components are li = (&,B,  G),  while i, b, 8, and h are used to denote time, density, 
pressure, temperature and enthalpy respectively. We shall assume that the fluid is a 
perfect gas with ratio of specific heats y ;  then the upstream Mach number, Mu, is 
given by 

where the sound speed a, is given by 

(2.1 a )  

( 2 . l b )  
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The inviscid solution for this flow configuration consists of uniform quantities on 
either sides of straight shocks (e.g. see Hayes & Probstein 1966). Specifically, 

e = 7 -  P S  - Y + l  l +  

tan# = e tanu ,  

(2 .2a)  

(2 .2b)  

( 2 . 2 4  

(2 .2d)  

(zill)u = (zilI)s = Ocosu, (2il), = -Osinu, (2il), = -eBQsinu, (2 .2e)  

where zil, and zi, are the velocity components parallel and perpendicular to the shock. 
From (2.1) it follows that between the shock and the wedge the fluid velocity has 
magnitude 

and the local Mach 

Os = Ocos a( 1 + €2 tan2 u)f, 

number Ms is given by 

W, cos2 a( 1 + e2 tan2 u) 
1 +i(y-  1) (1 -e2)Wu sin2 u ’ 

iq= 

(2 .3)  

(2 .4a)  

or equivalently 

M“, = Jc (2 .4b)  

Note that (2 .3)  specifies the slip velocity along the wedge, which in viscous flow 
necessitates the existence of a boundary layer. 

Before examining this boundary layer in detail we introduce a non- 
dimensionalization based on the flow quantities between the shock and the wedge, and 
a lengthscale L which is the distance of interest from the t$ of the wedge. Specifically, 
we introduce coordinates Lx,  velocitjes Os u, time LtIU,, pressure bs Q p ,  density 
bSp, temperature ET and enthalpy hsh. The governing equations of the flow then 
become 

cos2 (T( 1 + e2 tan2 u) -icy - 1) ( 1  - e2)Jc  sin2 u * 

- + V * ( p u )  aP = 0 ,  (2 .5a)  
at 

(2 .5b )  
Du 1 
Dt Re 

p- = - V p + -  [ 2 V .  (pe) + V ( ( p ’ - $ )  V .  u ) ] ,  

DT Dp’ 1 (r - 11% @, p-= (Y--l)&q-++V*(pVT1+ Re 
Dt Dt PrRe 

( 2 . 5 ~ )  

y q p  = pT, h = T ,  (2.5d,  e )  

where (2 .6a)  

@ = 2pue:e+(p’-$)  ( V - U ) ~ .  (2 .6b)  
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Here p and p’ are the shear and bulk viscosities respectively, both of which have been 
non-dimensionalized by a typical viscosity CS, Pr is the constant Prandtl number, 
and 

Re = P S  OsL ( 2 . 6 ~ )  
P S  

is the Reynolds number which we shall assume is large. Henceforth, the subscript s 
will be omitted from Ms. For completeness here we define coordinates (g, 7,  x ) ,  where 
E ,  7 measure distance along and normal to the shock : 

6 = xcosq5+ ysinq5, 7 = -xsinq5+ ycosq5. (2.7) 

These coordinates will be used in the Appendix. 
Similarity solutions to the steady boundary-layer equations can be found in terms 

of the Dorodnitsyn-Howarth variable (e.g. Stewartson 1964). For simplicity we shall 
assume (i) that  the wedge walls are insulating, i.e. aT/ay = 0 on y = 0, and (ii) that 
the Prandtl number is unity, i.e. Pr = 1. The temperature a t  the wall, T,, is then 
given by (e.g. Stewartson 1964) 

T, = 1 +icy- 1 ) W .  (2.8) 

The linear stability of this boundary-layer flow has been extensively studied using 
the Orr-Sommerfeld quasi-parallel approximation (e.g. Mack 1969, 1984, 1987). 
Recently, Smith (1989) has shown how an asymptotic triple-deck description of 
lower-branch Tollmien-Schlichting waves (i.e. ‘first mode ’ waves) can be obtained 
for wave directions sufficiently oblique to be outside the local wave-Mach-cone 
direction. In the limit of large Mach number M ,  Smith (1989) found that the most 
rapidly growing waves have frequencies of order Rety$ GgM-i,  and wavelengths in 
the x- and x-directions of order 

Red pi W fiWMYz, Re-tpi fiwM-$ (2.9a, b )  

respectively, where p, is the viscosity coefficient a t  the wall, and we have slightly 
modified Smith’s (1989) results to account for the case when the shear viscosity is not 
given by Chapman’s law (see also Blackaby 1990). As is conventional there are lower, 
middle, and upper decks in the y-direction with scales 

Re-%& fiWMi, Re-$& @,, Re-:& fiWM-t (2.9c, d, e) 

respectively. 
One aim of this paper is to see how the growth rates of these oblique 

Tollmien-Schlichting waves are modified by the presence of a shock. To this end, we 
attempt to scale the problem so that the shock occurs in the upper deck. Thus, since 
q5 must be small, it follows from (2.24 and (2.9e) that 

q5 - 8 tan u - Re-$&, fi,M-f, (2.9.f 1 
which from ( 2 . 9 ~ )  implies an x lengthscale of order Me tang.  If the complications 
arising from non-parallel effects are to be excluded in order to concentrate on the 
effects of the shock interaction, we require 

MEU + 1, ( 2 . 1 0 ~ )  

i.e. that the wavelength of the Tollmien-Schlichting waves is much less than the 
distance from the apex of the wedge; here we have assumed that u e 1, as turns out 
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to be necessary (see (2.16d, e)). From ( 2 . 2 ~ )  and (2.4a), E = O(M-2u-2), so ( 2 . 1 0 ~ )  
becomes 

uMB 1. (2.10b) 

However, for M: > 0 in (2.4b) we require, since 6 < 1, 

(y-  1)M2u2 < 2. (2.10c) 

Hence, in order to consider the effect of the shock on the instability waves without 
the effects of non-parallelism we are forced to make the 'Newtonian ' assumption 

(7-1) + 1. (2.11) 

It follows that when ( y -  1) is not small there is no systematic asymptotic approach 
to this problem that allows the inclusion of shock effects without those associated 
with non-parallelism. 

Before proceeding to asymptotic expansions based on the above scalings, it is 
convenient to consider whether there are any further restrictions on the magnitudes 
of (y-  l ) ,  M and u. First, we note that a pressure/acoustic wave incident on a shock 
will produce entropy and shear waves as well as generating a reflected wave. The 
entropy/shear waves have a typical lengthscale normal to the shock of magnitude 

E(IE-1, (2.12) 

where ti is a typical wavenumber in the z-direction (see $3  below); from (2.9a,f)  
h - Mu. For simplicity we choose to ignore viscous effects in these waves at leading 
order, in which case we require 

EuZ-' 9 (ZRe)-i, i.e. u3M5 + Re, (2.13) 

If it is assumed that the shock has a viscous internal structure, then its thickness is 
order (suRe)-' (e.g. Moore 1963), and (2.13) then ensures that the entropy/shear 
waves have a wavelength much larger than the thickness of the shock. It follows 
from ( 2 . 1 0 ~ )  that these waves have typical y-scales much less than the width of the 
upper deck. 

Since nonlinear effects are an important part in transition to turbulence, we shall 
select a scaling which leads to a nonlinear problem, before linearizing to obtain an 
analytic solution. Following the scalings in Smith (1989), we conclude that a 
nonlinear lower-deck problem is recovered if 

p - Re-:& T;$M-i. (2.14 a)  

In the upper deck this generates a velocity Perturbation normal to the wedge (and 
normal to the shock) of order Re-ipiQM-4. In order that linearized shock 
conditions are applicable, the undisturbed velocity normal to the shock should be 
much larger than this, i.e. from (2.2e) 

eu B Redpi  !P$M-f, i.e. u4M6 4 Rep;' T,. (2.14b) 

If this condition is violated, nonlinear entropy waves result, a difficulty which is not 
tackled here. Also, note that if (2.15) is satisfied, then from (2.106) so is (2.13). 

In order to fix a scaling we shall assume that (cf. ( 2 . 1 0 ~ ) )  

(y-l)M2u2 - 1.  ( 2 . 1 5 ~ )  
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Since u 4 1 (see below), it follows from (2 .8)  that T, - ( y - 1 ) M 2  % 1 ;  hence the 
temperature variation in the undisturbed boundary layer is large. It is also necessary 
to fix the viscosity law. For Chapman's law pw = CT,, while for Sutherland's law 

- 

pw=T,+c l+c-fiw x (l+C)!@,.  

With these assumptions, the interaction condition (2 .9  f )  becomes 
8 3  

M - @Re= (Chapman), M - &Re$ (Sutherland). (2.15b, c )  

The restrictions (2.10 b) and (2.14) imply 

Re-h 4 u 4 Re-$, i.e. Re& < M 4 Re$ (Chapman), (2.15 d )  

Re-; 4 u +4 Re-&, i.e. Re; +4 M 4 Re$ (Sutherland). (2.15 e) 

If the lower-deck is forced to remain linear then the upper bound on u relaxes to 
u 4 Re-A and u 4 R e - h  for the two laws respectively. In  (2 .15d,  e) the lower bound 
is attained when the quasi-parallel assumption is violated (Smith 1989 ; Blackaby 
1990), which for our scaling requires ( y - 1 )  - 1. In  particular, (2 .15d)  does not 
violate Smith's (1989) restriction on the Mach number for the quasi-parallel 
assumption since he assumes that (y-  1 )  is strictly order one, whereas we take 
( y -  1 )  4 1 .  However if (y-  1 )  ;" 1 ,  the above arguments indicate that for the non- 
parallel scaling, i.e. for M - R e s  in the case of Chapman's law, the effects of an outer- 
deck shock need to be included unless u 9 M-l.  We also note that because we take 
(y-1) < 1 ,  there is no strong interaction between the shock and the undisturbed 
boundary layer for the range of Mach numbers specified by (2 .15d,  e )  (cf. Brown, 
Stewartson & Williams 1975). 

For convenience we introduce the scalings 

u = Z M i R e d  (Chapman), u = ZMERe-A (Sutherland), ( 2 . 1 6 q  b )  

(y-  I)MW = rc2, ( 2 . 1 6 ~ )  

then T, z ;rz2a-2 1 ,  (2 .16d)  

and to satisfy ( 2 . 1 0 ~ )  we require rC2 < 2 .  Also, from ( 2 . 2 4 ,  (2.4b) and (2 .16)  the 
position of the shock is given by 

y = xetanu x ReAM-TE-lx (Chapman), (2 .17a)  

y = xe tan u x RehM-8 Z-lx (Sutherland), (2.17b) 

since 
1 
I 

ex- 
a2W . 

3. The triple-deck equations 
The scalings leading to these equations for compressible flow have been given 

elsewhere (e.g. Stewartson 1974) ; hence only a brief outline is given here. In all three 
decks the x-, z- and t-scalings are 

(3 .1)  
x = l + R e - % p i d , & h - f X ,  z =Re-$$@,h-fM-iZ,  

t = Re-f$f iWMih-$7,  
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where A is boundary-layer skin friction from the undisturbed middle-deck solution 
(for Chapman's viscosity law h = 0.332, i.e. the Blasius value). 

3,l. Lower deck 
In this layer, the scalings are 

On substituting into (2.5) we obtain a t  leading order 

I 

u, + v, + w, = 0, Py = 0, 

u,+ uu,+ vu,+ WU, = u,,, 
w,+uw,+vwy+ WW, = -Pz+ wyy. 

The boundary conditions are 

U = V = W = O  on Y=O,  

(3.3) 

U-t  Y + A ( X , Z , T ) ,  W-tO as Y-+ CO, 1 (3.4) 

where the conditions as Y-t  00 come from matching with the middle deck, and A is 
the so-called displacement function. 

3.2. Middle deck 
The middle deck has the same thickness as the undisturbed boundary layer, which 
has a finite extent in y when T, >> 1 (although an infinite extent in terms of the 
Dorodnitsyn-Howarth variable). Strictly this means that the middle deck should be 
divided into three regions (i) a boundary-layer region where T >> 1, (ii) a region where 
T - 1, and (iii) a small transition region between the two. 

In region (i) the standard scalings and solutions apply: 

1 
y = Re-;& @, y*, u N u,*(y*) +Re-B,& f i w i l b h - ~ A u ~ , ,  

v - - R e - f , u ~ ~ ~ M - f h f A , u , * ,  w N Re- f lu~T~M-th t (R ,*u ,* ) - lD(X ,Z ,7 ) ,  (3.5) 

p - M-*+Re- f ,u~! t"$M-~h~P,  p - R,*(y*)+Re-t~~!@,M~h-fAR,*,, ,  

where u,*(y*) and R,*(y*) are the undisturbed velocity and density profiles 
respectively (note that R,* = O(T;l)) ,  and D, = -Pz. 

Essentially the same solution holds in regions (ii) and (iii), although minor 
rescalings are necessary. For example in region (ii) R,* = u: = 1, which leads to 
simplifications in the expressions for u and p in particular. The precise scaling in 
region (iii) depends on the viscosity law. For example, in the case of the Chapman 
law, u&, scales with (log T,)i with the result that the largest velocity perturbations 
occur in this region. Thus for M close to Rh the middle deck may become nonlinear 
for smaller wave amplitudes than the lower deck. 
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3.3. Upper deck 
The scalings for the pressure/acoustic waves here are 

y = Re-:& fl,M-fh-iy, u N 1 +Re-fpk C f M - t h t a l ,  (3.6a, b )  

(w,w) - Re-fpkCfM-tht (~l , i i i l ) ,  p - M-2+Re-fp$T$M-~h~j j l ,  (3.6c, d )  

p -  1+Re-f,&T$&h~ii1, T -  l + ( y - l ) R e - ~ , & ~ ~ & A t ~ .  (3.6e, f) 

These yield the governing equation for the pressure 

K X X  - F 1 g g - P 1 z z  = 0. (3.7) 

pllg=Axx on g=O (3.8) 

One boundary condition comes from matching with the middle deck, i.e. 

(note pl = P on g = 0) ,  while another boundary condition is to be applied at  the 
shock a t  

(Chapman), ( 3 . 9 4  

(3.9b) 

As is conventional, solutions to (3.7) will be referred to as acoustic waves. 

3.4. Shock conditions 
Wave transmission and reflection across shocks have been studied by Moore (1954), 
Ribner (1954), McKenzie & Westphal (1968) and others. In general, whenever an 
acoustic wave is incident on a shock, entropy and vorticity waves are generated in 
addition to a reflectedltransmitted acoustic wave. The entropy/vorticity waves 
have the same frequency and the same wavelengths parallel to the shock as the 
acoustic waves. However, they propagate in the direction of the mean flow, which 
means for the present scalings that their wavelengths normal to the shock are very 
much less than the acoustic wavelength given by ( 3 . 6 ~ ) .  The scaling (3.6) does not 
therefore describe them. In the Appendix general jump conditions at a shock are 
given for incident linearized inviscid waves. The limiting process appropriate to the 
above scalings then yields the boundary condition 

p1 = 0 at g =  ys. (3.10) 

In deriving (3.10) from the exact solution to the general linear inviscid problem, we 
ensure that proper account is taken of the short-wavelength entropy/vorticity 
waves. A multiple scales approach would be an alternative. 

The entropy/vorticity waves propagate parallel to the direction of the basic flow, 
which is of course parallel to the wedge. It follows that in any situation where the 
forcing is over a distance comparable with the triple-deck scaling (3 .1) ,  i.e. over a 
distance which although possibly large does not extend asymptotically far upstream, 
the entropy/vorticity waves will be concentrated in a narrow region close to the 
shock. Hence they cannot affect the solution in the middle and lower decks.? 

t We note that this is doubly so if (T + Re-& (Chapman) or c + Re-& (Sutherland), since second- 
order viscous effects ensure that the entropy/vorticity waves decay over a distance much less than 
the width of the upper deck - although it follows from (2.15d. e )  that the lower deck must be linear 
for our analysis to be valid for such values of (T. 
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4. The dispersion relation 
Solutions to the nonlinear system (3.3), (3.4), (3.7-3.10) can in general only be 

obtained numerically. However, analytic solutions can be found if the waves are of 
small amplitude so that the system linearizes. It is then convenient to focus attention 
on a single mode, so we write 

u - y+h~ei ' a~+~z-" t )+c .c . ,  (v, W , P , A )  - h(F, ~ , ~ , A " ) e i ( a x + p Z - " t ) + c . c .  

Substituting into (3.3), and linearizing under the assumption that h 4 1, we obtain 
(e.g. see Smith, Sykes & Brighton 1977) 

where 

The solution to (3.7) subject to (3.8) and (3.10) is 

( 4 . 1 ~ )  

(4.1 b)  

(4.2) 

Hence, from (4.1), (4.3) and the fact that I? = fi, on y = 0, i t  follows that 

Note that for p2 > a2, the dispersion relation for a flow without a shock is recovered 
in the limit gs + 00 (Smith 1989). 

The dispersion relation (4.4) admits both growing and decaying modes. The 
neutral case corresponds to 

6, = - c1 it, ( ~ 2  - a2)f = c ' p z  tanh ((Pz-a2)gtjs), (4.5) 

where c1 x 2.3 and c2 x 1.0 (a similar expression exists for p2 < a2). These are plotted 
as solid curves in figure 2 for three different values of tjs. The diagonal dashed curve 
defines the wave Mach cone. Above this line the acoustic waves in the upper deck are 
purely sinusoidal, beneath i t  they either grow or decay in g. When there is no shock 
in the upper deck, waves described by triple-deck theory are constrained to lie in the 
region of parameter space below the diagonal (Smith 1989); with shocks present 
there is no such limitation. 

Asymptotic formulae for these neutral curves can be derived that agree well with 
the numerical results : 

a = 0 ( 1 ) ,  p 4 1 ,  n = 1 , 2  )..., 

( 4 . 6 ~ )  
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P 
0 1 2 3 4 5 

P 

0 0.5 1.0 1.5 2.0 2.5 3.0 
P 

FIGURE 2. The neutral curves a = a(/3) for (a) g8 = 1, ( b )  4, (c) 16. 

( 4 . 6 ~ )  

These formulae confirm that there are an infinite number of neutral waves, and that 
with the exception of the subsonic mode, they all asymptote to  the line /3 = a for a,  
/3 large. 

2 FLM 214 
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I I  
0 1 2 3 0 1 2 3 

a a 

FIGURE 3. (a) The growth rate Sa, and ( b )  the wave speed 0, as a function of 01 for gs = 4, /3 = 1 .  

The short-dashed lines in figure 2 also represent waves with zero growth rate, but 
they have an infinite frequency and hence our asymptotic analysis breaks down in 
their vicinity. These lines correspond to the points in the (a,P)-plane where 

tan ((a2-/P)tqs) --f co. 

More precisely if we write 

(a2-/P)+qs = (n++)x- s  

for n = 0, 1, . . . , where 6 is small and positive, then it follows that 

(4.74 

(4.7 6 )  

Hence, if /3 is held fixed then, when a is within a distance O(6) of a dotted curve, the 
disturbance has frequency O(S1) and a growth rate O(d). The wave grows or decays 
depending on whether it is below or above the dotted curve respectively. 

It also follows from (4.7b) that the growth rates in the unstable regions above 
a = p increase with n. In fact if we hold p fixed y d  let a -+ 00, analysis of (4.4) shows 
that the unstable intervals are of range O(0l-S) and that the growth rates in the 
unstable intervals are typically O(ag). The frequency in the unstable intervals also 
increases like a;, and so the unstable intervals for n $ 1 correspond to high- 
frequency, short-wavelength modes with increasingly high growth rates. However, 
the fact that these modes occur over decreasingly short ranges in a as n is increased 
means that they might not be excited naturally in a physically realistic flow 
situation. 
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FIGURE 4. 9, and 9, as functions of g, for (a) /3 = 1, a = 0.999/3; (a) @ = 2, a = O.QQDj3. 

In figure 3 we show the dependence of 61, and 51, on a for the case & = 4, /? = 1. 
We observe the predicted monotonic increase in the growth rates and the shortening 
of the range of unstable wavenumbers as a increases. Results at other values of qs and 
/3 are similar, with the range over which the oscillations in a occur decreasing as 
either gs or /3 is increased. 

It is perhaps significant that the modes which reduce to those discussed by Smith 
(1989) when qs + CO, i.e. the subsonic modes, have growth rates less than those with 
/3 < a. As a measure of the growth rate of the subsonic mode we can take its value 
close to the line a = p. In  fact in all the cases calculated we found that this mode had 
its maximum value in this neighbourhood. In  figure 4, we show the dependence of SZi 
on gs for different values of the spanwise wavenumber p with a = 0.999/3. We see that 
61, increases to a maximum and then decreases. Thus, for a given (a,  b) dose to the 
line t9 = a there is an optimum value of gS which maximizes the growth rate. In  fact 
it  follows from (4.4) that if 

a2-P2 = d with ldl < 1, &Jdli 4 1, 

then, close to a = p, 

Asymptotic analysis for this expression for small and large ps demonstrates that the 
growth rate has a maximum for intermediate ps, e.g. 
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FIGURE 5. The growth rates and phase speeds as a function of ys for a = 1, /? = 2, 3, 4 

We note however that if gslAIi is not small then the above simplification does not 
hold. Further for gsldJi large the asymptotic behaviour depends on the sign of A .  If 
d < 0, then the eigenrelation (4.4) reduces to 

which is valid for gs + 1,  a,  p = O(1). As expected this is the eigenrelation of Smith 
(1989). In figure 5 we show the dependence of 52, and Q, on gs for different values of 
/? with a = 1. For these subsonic modes the growth rates approach constant values 
as gs -+ co , in agreement with Smith's (1989) shock-free analysis. Hence subsonic 
modes of fixed wavelength do not feel the presence of the shock when gS is large (nor 
do short-wavelength subsonic modes when gs = O(1)). However, if gs-+ co with 
A > 0 there is no simplification similar to (4.8) since the growth rate oscillates, with 
the regions of stability and instability becoming increasingly thin as gs is increased. 

As indicated above, the structure of the eigenfunctions associated with the 
different modes shown in figure 2 depends on the sign of A .  If p > a then the 
disturbances are described by a combination of exponentially growing and decaying 
functions. In any of the limits where the shockless eigenrelation is recovered, e.g. 
gS+ co or p+ co, the exponentially decaying function dominates and the eigen- 
functions also tend to those of the shockless problem. The modes which have 
p < a are described by trigonometric functions and therefore in any limit involving 
fjs, PI or a they are oscillatory and O( 1) between the wedge and the shock. This class 
of the mode is perhaps best thought of as sound waves trapped between the wedge 
and shock and amplified by the boundary layer. 



The instability of hypersonic flow past a wedge 31 

5. The inviscid modes 
So far we have only discussed the effect of the shock on viscous modes of instability 

yet it is well-known that compressible shear flows can also support unstable inviscid 
disturbances. The inviscid modes of instability for a compressible boundary layer 
have wavelengths comparable with the boundary-layer thickness so we consider 
perturbations to the flow described in $2 but with wavelengths scaled on the main- 
deck thickness. In order to be consistent with previous investigations we drop the 
rescaling (3.1) introduced in order to simplify the triple-deck analysis of $3. We also 
relax the Newtonian assumption (2.11)’ allow for a non-unity Prandtl number, and 
assume Chapman’s viscosity law (see Blackaby & Hall 1989 for the changes necessary 
when Sutherland’s law is used). 

Following for example Mack (1987), we scale wavelengths on the main-deck 
thickness and the wave speed on the free-stream speed. The pressure perturbation P 
for an inviscid mode then satisfies the compressible Rayleigh equation 

Here a prime denotes a derivative with respect to boundary-layer variable y*, whilst 
the basic velocity field % and temperature !i’ for an insulated wall are given by 

=f’(q), T =  l + ~ ~ ( y - l ) ~ 2 ~ ~ ~ ( f ” ( s ) ) ~ ~ d ~ ~ ( f ” ( p ) ) 2 - p r d p ,  0 ( 5 . 2 ~ ’  b )  

where f is the Blasius function and 7 is the Dorodnitsyn-Howarth variable defined 
by 

The quantities a/(2C)i  and P(2C)i are downstream and spanwise wavenumbers, whilst 
c is the wave speed. In terms of the Dorodnitsyn-Howarth variable, the Rayleigh 
equation (5.1) becomes 

( 5 . 2 d )  

We confine our attention to modes that satisfy 

P = O  on q = O ,  P+O as q-fco, (5.3a, b )  

which together with (5 .2d)  specify an eigenrelation c = c(a,p). One of the points at  
issue here is whether the decay of P when T,I --f 00 is sufficiently rapid to mean that the 
shock located outside the boundary layer has a negligible effect on the disturbance. 
In  order to see whether this is the case we discuss the structure of solutions of (5 .2d)  
in the limit M + 00. 

Since this work was completed we learned of an independent investigation of (5.1) 
for M % 1 by S. N. Brown and F. T. Smith. Inter alia they have concentrated on the 
so-called vorticity mode (Mack 1987), while we shall study the acoustic modes. We 
restrict our discussion of (5 .2d)  to the minimum that explains the large M structure 
of P and shows that in the wedge problem considered in this paper the shock 
generally has only an exponentially small effect on the eigenrelation except for 
wedges of thickness comparable to the boundary layer. Further, we concentrate on 
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the generalized inflection point neutral modes of ( 5 . 2 4  which have = 0. The 
discussion we give can be extended to unstable two- and three-dimensional modes, 
although as indicated below an extra critical-layer region then needs to be included. 

The generalized inflection point occurs where i&. T = aUZEy. TU., and if we write 

log [2 1ogM21+ + log B 
[2 1ogM21t 

g = B+ [2 l o g P ] + -  1 

where the constant B comes from the large-.)) asymptotic form off: 

(5.4) 

( 5 . 5 ~ )  

then we can show that it occurs at  

where d is another known constant. The wave speed is then given by ti evaluated at  
the inflection point so that ( 5 . 2 d )  is not singular there. Thus, we have 

I3 
c = 1-&+ ..., (5.56) 

with El = l / (y- l ) .  
Next we anticipate the change of scale of the boundary layer for M % 1 and write 

It follows that the zeroth-order approximation to ( 5 . 2 d )  for O(1) values of 7 is 

For large values of g it is found that the solutions of (5.6) are such that 

( 5 . 7 ~ )  

where D, and E,  are arbitrary constants. One of these constants can be fixed as a 
normalization condition, while the other is then determined by investigating the 
solution of (5 .2d )  in the region where k = 0(1 ) ,  and also in the region above this 
logarithmically thin layer. In passing it is of interest to note that this layer also 
controls the Gortler vortex mechanism in hypersonic boundary layers (Hall & Fu 
1989). 

In seeking an asymptotic expansion for P = 0(1 ) ,  we note from (5 .2d)  that for 
1 Q g + M2, the leading-order approximation for P can be written as 

(5 .76)  

where gc  is the position of the generalized inflection point. The leading term for 
k = O(1) can be found by direct expansion of this expression. Alternatively, with 

P = F o p ) +  ...) ( 5 . 8 ~ )  
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we find after some manipulation that Po satisfies 

(5.8b) 

which is to be solved in the range 0 < < 00. The solution of this equation is 

Po = d , ( ~ 2 ~ - 2 E l d P + ~ l o g 8 ) + 8 0 ,  ( 5 . 8 ~ )  

where do and 8, are constants. This solution is to be matched with (5.7) when 
8+00 so that 

Above this logarithmically thin region there is an outer region with the scaled 
coordinate 7 = W 2 7  (note from ( 5 . 2 ~ )  that y* = 0(1)  in this region). The solution 
there is 

P = E, exp [-a( 1 - (1 -c)~W)"] + 0 (exp) - E, exp ( - A ,  7). 
Matching this solution to the logarithmic term in ( 5 . 8 ~ )  for E small we find that 

2q Do 
A ,  d 2 W  ' 

E, - ___ 

and matching to the constant yields 

8, - E,  

Note that this means that the constant term dominates the P-dependent part of the 
complementary function in ( 5 . 8 ~ ) .  However, on substituting ( 5 . 8 ~ )  into ( 5 . 2 ~ )  we 
confirm that (5.8b) is still the leading-order equation for e(y). An alternative way to 
see this is to work with the equation for the velocity fluctuation normal to the wall, 
rather than that for the pressure fluctuation. 

Finally, matching back to the lower layer adjacent to the wall we conclude that 

E ,  - 8, - E, * 1. 

Therefore, A ,  is determined by the eigenvalue problem specified by (5.6) together 
with 

PA=O on 7 = 0 ,  Po+O as q-too. (5.9) 

This problem was solved numerically with y = 1.4 and Pr = 1 to yield the sequence 
of eigenvalues A = 4.81, 13.84, 23.34, 33.03, 42.82, 52.67, 62.55, 72.45, 82.37, 92.29, 
. . . . In figure 6 (a) we have plotted our one-term asymptotic prediction of a together 
with the values which we obtained by a full numerical solution of the inviscid 
stability equation (5.2d). This was done by deforming the path of integration into the 
complex plane in order to avoid diffieultiea near the generalized inflection point. We 
are grateful to P. W. Duck for comments on the efficient solution of the full inviscid 
equation. The comparison made in figure 6 (a)  shows that the hypersonic prediction 
we have made agrees well with the solution of the full problem over a wide range of 
Mach numbers. Surprisingly the agreement between the curves is better for the lower 
inviscid modes; we have no explanation of why this should be the case. The 
eigenfunctions associated with the above set of eigenvalues are illustrated in 
figure 7. 
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(a) 

2 4 6 8 10 
M 

\ \ \  

FIQURE 6. (a). The neutral curves predicted by the asymptotic theory for large M (----) and the 
numerical solution of (5 .2d)  (-); y = 1.4, Pr = 1, /3 = 0. (b) The neutral curves for the 
generalized inflection point modes. Mack’s (1987) results (-) and the high-M asymptotic 
prediction (----); y = 1.4, Pr = 0.71, /3 = 0. 

We now turn to a comparison of our results with those of Mack (1987). A direct 
comparison is difficult because Mack apparently used a combination of Chapman’s 
and Sutherland’s laws to describe the viscosity-temperature dependence. The theory 
presented here is not valid for Sutherland’s law (see Blackaby & Hall 1989)’ but in 
order to compare with Mack we use Chapman’s law and evaluate the Chapman 
constant by making the law exactly correct at the wall. The wall and free-stream 
viscosities in the resulting definition of C are then evaluated using Sutherland’s law ; 
a consequence of this well-known approximation is that C then effectively becomes 
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a function of the Mach number for a given set of wall and free-stream temperature 
conditions. In this way we can obtain results that can be compared with Mack's; 
however a further minor alteration is that the Prandtl number must be changed from 
unity to the value 0.71 appropriate for air. For this new Prandtl number the set of 
eigenvalues is A = 5.07, 14.33, 24.07, 34.02, 44.08, 54.20, 64.35, 74.52, 84.71, 94.91, 
. . . . Thus the eigenvalues vary little when the Prandtl number is changed. In order 
to bring in the effect of the Chapman constant, and be consistent with Mack's 
scaling, these values must be resealed by dividing by (2C)i. In figure 6(b) we have 
compared our results with Mack's over a range of Mach numbers; as for the previous 
case we have good agreement between the different methods, at  least for the lower 
modes. Finally, we note that the higher-order modes of the eigenvalue problem can 
be derived by applying the WKB method to (5.6). In fact we anticipate that the 
WKB description of the modes discussed above, coupled to the vorticity mode 
description of S. N. Brown & F. T. Smith mentioned earlier in this section, could be 
used to explain the kinks in the neutral curves given by Mack. Thus we expect that 
these eigenvalues are split apart by an exponentially small amount in the manner 
discussed by, for example, DiPrima & Hall (1984) for the Taylor problem. 

With the structure of the neutral mode thus identified, the form of the unstable 
modes can be determined. Suppose that 

c" c"i 
c =  1---1+ ...+ +... , 

M2 ~ 4 ( 2  iogw)+ 
( 5 . 1 0 ~ )  

where Ei is the leading-order complex term, and El is not necessarily equal to 
l /(y- l ) ,  cf. (5.5b). Then for E = O ( l ) ,  ( 5 . 8 ~ )  is generalized to 

E .  p = L  A ,  2cDo d2M2 (l+...+w(21;gM2)i+...) 

<+ ..., (5.10b) 
1 

+,nap IogW) 

where the first two terms represent the asymptotic expansions of (5.7 b) ,  E,  and Di are 
the leading-order complex terms (Do is taken to be real), and f i  satisfies 

Hence 

(5.1 1 a) 

(5.11 b )  

If El $. l / (y-  l), then there must be a jump in D, across the critical layer 8 = EJd. 
Further, from matching with the solution for 7 = O( l) ,  D, can be assumed to be real 
for 8 > ZJd; hence for 8 < FJd and Im (EJ  > 0, it follows from a standard linear 
critical-layer analysis that 

Im (Dz) = d , ( ( y -  1)2g- 1). ( 5 . 1 2 ~ )  
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Matching with the solution where 7 = O(l) ,  implies that 

(5.12 b )  

Im (Ei) can now be fixed by looking a t  higher-order terms in the solution for 9 = O( 1).  
Let 

P =  Po+ ...+ Do p,+... , 
~ ~ ( 2  iogw)t  

( 5 . 1 3 ~ )  
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FIGURE 7 .  (a) The eigenfunction PJy) for (a )  A = 4.81, ( b )  13.84, (c) 23.34, (d) 33.03, ( e )  42.82, 
(f 52.67, (9) 62.55, (h)  72.45. y = 1.4, Pr = 1. 

then the governing equation for Im (pZ) is 
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subject to P; = 0 on q = 0. The existence of the eigensolution Po implies that we can 
take P, = 0 on 7 = 0 without loss of generality, and we suppose that the numerical 
solution to (5.13b) yields 

Im(P,)-tIm(Ei)K as q- t co ,  ( 5 . 1 3 ~ )  

where K is a numerically determined real constant. Then the matching condition 
with (5.10b) yields 

Since we have assumed that I m  (Ei) > 0, this eigenproblem for Im ( E J  can only be 
satisfied for one sign of ( l - (y - l )2z ) .  On the basis of Mack’s (1987) solutions of 
(5.1), we anticipate that the growing modes can be found for 0 < El < l / (y- l ) ,  
where the lower bound is necessary if there is to be a critical layer at all. Hence 

.%A,,G((y- 1)’e-1) 1 
Im(Ei) = for O < E ,  <-. 

(KA, d2 + 4E1) 7-1 
(5.14) 

6. Conclusions 
We have shown that if shock effects are to be included in a Tollmien-Schlichting 

stability analysis of flow past a wedge, then the Newtonian approximation, 
( y -1 )  < 1,  must be made if the complicating effects of non-parallelism are to be 
avoided. With this assumption we have seen that the viscous modes have their 
dispersion relationship crucially altered by the presence of a shock a t  a distance & 
from the wedge scaled on the upper-deck thickness. In the limit qs+ 00 Smith’s 
(1989) mode is recovered, and the shock has no zeroth-order effect on the mode’s 
growth rate. In addition to this mode, there is an infinite discrete spectrum of 
disturbances which persist to the shock. These modes have large growth rates at high 
frequencies, but occur only over small ranges of wavenumber, which suggests that 
the frequency might have to be tuned to produce instability. It is therefore an open 
question as to whether these additional modes play a critical role in the transition 
process in hypersonic flows. We also point out that where our analysis predicts 
infinite frequencies, i.e. close to the short-dashed curves in figure 2(a-c), then our 
asymptotic expansions fails and a new structure must be set up in order to account 
for the faster disturbance response. This problem has not been investigated in this 
paper. 

The main result of the inviscid mode analysis is that the high-Mach-number 
structure of the inviscid modes does not lead to a reduced rate of decay at infinity. 
Hence the shock cannot have a direct effect on these modes, a t  least until its distance 
from the wall is comparable with the thickness of the boundary layer. Then the 
steady flow changes and the effect of the shock may be felt within the outer region. 
As S. N. Brown & F. T. Smith (private communication) have shown, the vorticity 
mode is concentrated in the logarithmically small region specified by the scaling 
(5.4). Outside this region the mode decays rapidly; as a result the shock has no direct 
effect on the structure of the vorticity mode, other than by changing the mean 
velocity profile through shock-wave heating (Lees 1956 ; Blackaby, Cowley & Hall 
1989). 
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Appendix. Shock conditions 
In  this Appendix we give the conditions that must hold at  the shock - see Moore 

(1954), Ribner (1954) and McKenzie & Westphal (1968) for similar derivations. 
For convenience we now work with the coordinates (t,?, z )  defined in (2.7). We also 

redefine (u, w, w) to be the velocities parallel to the shock, normal to the shock, and 
in the spanwise direction, respectively. Therefore, for a shock given by 7 = f(t, z ,  t ) ,  
the jump conditions across the shock are (e.g. Majda 1983) 

I 

where 8' = p/[(y- 1 ) p ] + ~ ( u 2 + w 2 + w 2 ) .  The basic solution specified by (2.2) can be 
shown to satisfy these jump conditions with f = 0. 

We assume that there is a small disturbance beneath the shock and write 

( p , u , w , w , p , 8 )  = (R, U ,  V ,  w,P,E)+(r",.ii,v",~,27,e"). (A 2a) 

For our flow any waves above the shock propagate towards the shock. Hence the 
disturbance cannot extend above the shock, where we write 

(p, u, w, w , p ,  a )  = (R, 0, v, W , P ,  E ) .  (A 2b) 

The linearized shock conditions are obtained by substituting (A 2) into (A 1) and 
neglecting all nonlinear disturbance terms. The position of the shock will vary by 
only a small amount from 7 = 0, so we write f =f: Also, since the undisturbed flow 
is a constant above and below the shock, to a consistent approximation the jump 
conditions can be evaluated at  7 = 0 instead of 7 =f: Finally, we assume that the 
linear disturbance can be expressed as a superposition of Fourier modes, so that it is 
sufficient to study a single mode, i.e. we assume 

p" oc exp (i(at+Pz-SZt)), etc. (A 3) 
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Note that here a,  p and Q are not the scaled quantities of $4, After a little 
manipulation it follows from (A 1) that 

-i(sL-aU) (&R)f+Rv"+ V? = 0, ia(P-P)f+RVG = 0, 

2RVv"+PF+jj = 0, RViZ+ip(P-P)f= 0, 

-i(Q-aU) (m-RE)f+iaU(P-P)f"+(RE+P)v"+ VRE+ VE?+ Vjj = 0. 

f a n d  r" can be eliminated from the above to obtain 

ii = 0, 
(Q-aU)RV 

/3ii-~d = 0, RVG+jj- 

where for our basic state and non-dimensionalization 

- E € ( Y - 1 ) ( 1 - € 2 ) 9 - 2  

y w  2Y(l+€29-2) 
p=-- , 9- = tanu.  

Beneath the shock the linear waves have solutions proportional to  eik.c-int , where 
k = (01, v , p )  and 6 = (&q ,  2 ) .  The solutions for the different types of wave satisfy the 
linearized inviscid Euler equations, and have the following forms : 
acoustic : 

(a- U.k)2  = k2a2 where U =  (U,  V,O), a - - 

(jj, T) = (I ,  k)eik+iut, (ii, i j , i Z )  = k 2 - ' 7 )  eik .t;-iOt . ( A 6 )  

R(Q- U-k) , 

(A 7)  entropy : Q- U.k = 0, = pseik.L-iQt j j  = ii = = 6 = 0;  

vortieity : 

,} (A81 
$2- U*k = 0, (ii,v",iZ) = (G,, -v-l(a~iis+piZs),iZs)eik.C-iat 

p = r " = o .  
We denote the pressure amplitudes of the incident and reflected acoustic waves by 
pl and p ,  respectively, and their corresponding 7-wavenumbers by v1 and v2 
respectively. Then substituting (A 6)-(A 8) into (A 5),  and using the non-dimensional 
forms of (2.2),  we obtain after some manipulation 

P, = 0, 
K,+K,v, ) ( K,+K,v, ) ( Q-av-v, v PI+ G-aU-v2V 

where 

K ,  = 
- (Q-aU) (Q-01u)'(l+ e2Y2)  (3 - y + ( y  + 1 )  6 )  - (a2 +p') € Y 2 ( ( y +  1) - (7 + 5 )  E ) )  

(Q - aU)2( 1 + 2F-2) + (012 + p) € 9 - 2  
, 

( y  + 1) (1 -€)  €9- 
( 1  +e29-z2): . 

K ,  = 
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On substituting the scalings (2.16) into the above, we find that at leading order 
lKll B lK21, aU 9 151- v1 Vl, and hence 

Pl+P2 = 0, 

i.e. condition (3.10). Expressions for other quantities can be obtained similarly. In 
the asymptotic range (2.16d, e )  the C-, iij- and F-perturbations are dominated by the 
entropy/shear wave contributions ; in particular 

22uM 2puw - 2duM3 
( d 2 - p ) ; P l r  Iv (2 - p 2 ) s  - lP,, 7 -  ( 2 2  -p); c -  

where 
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